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1. INTRODUCTION AND STATEMENT OF RESULTS

Consider a doubly indexed sequence of points Xnv (nE N, V= 1, 2, ..., n)
such that

( 1)

The problems of existence, uniqueness, representation, convergence, etc., of
polynomials P2n- I of degree ~ 2n - 1 where the values of P2n _ I and those
of its second derivative are prescribed at the points (1) were studied by
Tunin et at. [1-3, 12]. In particular, they found that the zeros

1 = ~nl > ~n2 > '" > ~nn = -1

of the polynomial (l-x2)P~_I(x), where Pn-I(x) is the (n-l)th Legen­
dre polynomial, are appropriate for this so-called (0,2)-interpolation
problem. In this connection Professor G. Freud [6] proved the following
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THEOREM A. Let f be a continuous function on [ ~ 1, 1] such that

If(x+h)-2l(x)+f(x-h)1 =o(h) as h -+ 0. (2 )

Denote by Rn(f; x) the (0, 2 )-interpolation polynomial of Turim et al.
satisfying

where

(v= 2, 3,..., n - 1),

and limn~ if' en = 0. Then Rn(f; x) converges uniformly to f(x) on [-1,1]
as n -+ 00.

In several of his papers (see, e.g., [7, 8]) Professor Freud also
investigated the problem of approximation on the real line. It is in this
spirit that we wish to study the question of (0, 2)-interpolation. As a first
result in this direction Kis [11] proved

THEOREM B. Let f be a periodic function with period 2n. For every odd n
there exists a unique trigonometric polynomial Sn(f; y, x) of the form

n -- 1

ao+ L (a vcos vx + bv sin vx) + an cos nx
v=1

which interpolates f in the points 2vn/n (v = 0, 1,..., n - 1) and whose second
derivative assumes prescribed values ynv at these points. If f satisfies the con­
dition (2) and

Ynv = o(n)

then, as n tends to infinity,

(v = 0,1,..., n -1),

Sn(f; Y, x) -+.f(x)

untlormly on the whole real line. The condition (2) cannot be replaced by
.f E Lip (f. with (f. E (0, 1), even if the numbers Ynv are all taken to be zero.

In order to cover the case of non-periodic functions we may use entire
functions of exponential type which constitute a natural generalization of
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trigonometric polynomials (see [4, Theorem 6.10.1]). Introducing the fun­
damental functions

:=sinnZ(I+ZfZ~(I_Sinn()d() if n=O,
nz 0 (2 n(

An(z) (3)

:= ( -1 t sin nz (~+ (z _ n) f-n + z ~ (1 _sin n() d()
n(z-n) n -n C n(

and

sm nz
--- (I-cos nz)

(nn )3
if n#-O

:= sin nz rz sin n( d(
2n Jo n(

Bn(z)
sin nz f.. n + z (1 1)

:= ( -1 t 2;2 -n ;:; +"( sin n( d(

if n=O,

if n#-O

(4)

we define for any f E C2
( - 00, (0) the interpolation operator

if)

R(f; z):= L: (f(n) An(z) + j"(n) Bn(z))
n= -(f;;

which has the properties (see [10])

(i) R(f;·) is an entire function of exponential type 2n,

(ii) R(f;n)=f(n), R"(f;n)=j"(n) for all integers n,

(iii) R'(f; 0) = R"'(f; 0) = 0.

(5)

First we consider the problem of representing entire functions of
exponential type by this interpolation operator. We obtain

THEOREM 1. Let f be an entire function of exponential type r < 2n. If for
some A> 1

n

L: If(v)I=O(n 2(logn)-A)
V= -n

and

n

L: 1j"(v)1 = O(n 2(log n)-A) (6)
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as n -> ex; , then the series (5) converges absolutely and uniformly on every
compact subset of C and

f(z) = RU; z) + c'-nU) sin nz + c2,,,U) sin 2nz,

where

c,-,Af) :=~(~/'(O)+:3f"'(0»)

cvAIl := - ~ G/,(O) + :3/,"(0»).
Remark I, The example

f(z) = nz sin 2nz + cos 2nz - I

(7)

(8 )

(9 )

shows that r = 2n is inadmissible in Theorem I. Furthermore, condition (6)
is best possible in the sense that

(10)
n =--'.X

does not converge absolutely, if

n n2
I 1f"(v)1 :;:,c'-

I
-

v~ n og n

for a sequence of integers n tending to infinity.

(c > 0) (1 I)

THEOREM 2. Let f be an entire function of exponential type 2n. If

f(x) = o(x) as x -> ±oo (12 )

and iffor some A> I and all integers n

1f"(n)1 =O(lnl(log Inl) -A) as n -> ±oo, (13 )

then the series (5) converges absolutely and uniformly on every compact sub­
set of C and (7) holds.

Remark 2. The example in (9) shows that in (12) the 0 cannot be
replaced by O. Furthermore, in (13) the exponent ). cannot in general be
allowed to be 1.

As a consequence of Theorem 2 we obtain the
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COROLLARY. Let f be an entire function of exponential type 2n. If for
some A> 1

as x -> ±oo, (14 )

then (7) holds.

With the help of Theorem 2 we are able to prove an analogue of
Theorem A which may also be looked upon as an extension of Theorem B.

Letfbe bounded on the real line and let (f3rn)nEJ' be a bounded sequence
of complex numbers depending on a parameter r > 0. Then (see Lemma 5
below) the series

converges absolutely and uniformly on every compact subset of iC and
represents an entire function of exponential type 2r such that

(n=O, ±1, ±2,... ).

We now have

THEOREM 3. Iff: IR -> IR is a continuous and bounded function satisfying
(2) uniformly in x on the real line and

then

sup If3ml = o(r)
n

as r -> 00, (16 )

lim Rr(f; 13, x) = f(x)

uniformly in x on every compact subset of the real line. The condition (2)
cannot be replaced by

fE Lip IX (17)

with IX E (0, 1), even if the numbers 13m are all taken to be zero.

Remark 3. Previously (see [10]) we had obtained the conclusion of
Theorem 3 under the additional condition that

(18)

for some A> °and all real x.
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In order to see the relationship between Theorem 3 and Theorem B let f
be of period 2n. For odd n consider the trigonometric polynomial of Kis
satisfying

(
. 2Vn) . (2Vn)Sn j; y, -----;; = j -----;; ,

Now set

(v =0,1, ..., n-I).

{3 n/Z.v + jn := Ynv (v = 0, 1,..., n - 1; j = 0, ± I, ±2, ... ).

Applying Theorem 2 to Sn(f; y, . ) we see that

Sn(f; y, x) == Rn/z(f; {3, x) + C ln sin ~ x + CZn sin nx, (19)

where with the notation in (8)

(j = 1, 2).

Under the assumptions of Kis, namely, (2) and

max Ifllvl = o(n)
v

it can be shown that

S;,(f; y, 0) = o(n),

as n -+ 00,

which implies cjll -+°as n -+ 00. Now (19) in conjunction with Theorem 3
yields Sn(f; f' x) -+ f(x), uniformly on [0,2n] and hence, due to the
periodicity, on the whole real line. That Theorem 3 does not constitute a
direct generalization of Theorem B is attributable to our normalization (iii)
of the function Rn/z(f; /3, ').

2. LEMMAS

LEMMA I. Let G be holomorphic and of exponential type T in the closed
upper half plane. If for some real numbers A. and J1

IG(x)1 = O(lxlJl(log Ixl );.)

then

IG(reiO)1 = O(rJl(log r)A err sin 0)

uniformly for 8 E [0, n].

as x -+ ±oo,

as r -+ 00

(20)



FUNCTIONS VIA (0, 2)-INTERPOLATION

Proof Apply [4, Theorem 6.2.4] to the function

H: Z f--+ (z + i) -1'(1og(z + 2i)) -). G(z)

95

which is of exponential type r in the closed upper half plane and bounded
on the whole real line.

LEMMA 2. If G is an entire function of exponential type such that for
some real numbers .Ie and J1

as x~ too,

then also

as x~ too.

Proof According to Cauchy's integral formula for the derivative

and the desired result becomes an obvious consequence of the preceding
lemma.

LEMMA 3. Let F be an entire function of exponential type less than 2n. If
G is an entire function of exponential type 2n satisfying (20) with J1 > 0,

.Ie < °for which

then

G(n) = F(n), G"(n) = F"(n) (n=O, ±l, ±2,... ),

F(z) - G(z) = (a + [ ljJ(t) sin nt dt) sin nz,

where a is a constant and ljJ is a polynomial of degree less than J1.

Proof Put

K(Z) := F(z) - G(z).

Then K is an entire function of exponential type such that

(21)

(22)

K(V)=K"(V)=O (V=o, ±1, ±2,... ).

This implies (see [9, Lemma 1]) that

K(Z) = ¢J(z) sin nz (23)
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and in turn
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¢/(z) = t/1(z) sin nz, (24)

where ¢J and t/1 are entire functions of exponential type. Thus we obtain the
representation

K(Z) = (¢J(O) +f t/1(t) sin nt dt) sin nz.

Using (22) -(24) we may also write t/1 in the form

where

t/1 I(z) = F(z) - n c~s nzF(z )/sin nz
sm 2 nz

and

(
_ G'(z) - n cos nzG(z )/sin nz

t/12 z) - . 2 .
sm nz

For')' E { ±n/4, ±3n/4} we readily see that

lim t/1 I(rei)') = O.

Using Lemmas 1 and 2 we also obtain

as r ---> 00.

Now let k be the largest integer smaller than J1 and consider

I ( k t/1U)(O) )
lfJ(z) := ~k+ I t/1(z) - I -.-,- zi .

'" i~O J.

An obvious application of [4, Theorem 1.4.2] shows that lfJ is bounded in
the whole plane. By Liouville's theorem it is therefore a constant, which
must be zero since

for y E { ± n/4, ±3n/4}.

This shows that t/1(z) is a polynomial of degree k.

Notation. For the remainder of this paper C t , Cz, ... will always denote
appropriate positive constants.
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LEMMA 4. For x E ~ let nx be the larger of the possibly two integers
closest to x and denote by N(x) the set of all integers between 0 and nx

(including both 0 and nJ. Then for z = x + iy (x, Y E~) the fundamental
functions (3) and (4) may be estimated as follows:

IAn(z)1 ~cle2rrIYI, if nE {O, nJ, (25)

IA (7)1 ,,::. c errlYI + c (_1_ + 1 ) (e 2rr !YI - 1)
n - "" 2 3 In13 In _ n,1 3 '

if nEN(x)\{O,n,}, (26)

IAn(z)1 ~c41~3- (n~x)31 e
nlYI

+c5 max I~- 1. 3[ (e2rrIYI_l),
O';;;/';;;y n- (n-x+lt)-

if n ~ N(x).

if n ~ N(x);

IBn(z)1 ~cle2rrlll, if nE {O, nxL

IB(z)I"::'cerr,y,+c Izi (e 2rrIYI -l)
n "" 6 7 In (n-n,)1 '

if nEN(x)\{O,n,},

I-I
IB (z)1 ,,::. c .:- e 2rrl l'I

n "" 7 In(n - nJI '

(27)

(28)

(29)

(30)

Proof Since the fundamental functions An and Bn are of exponential
type 2n and bounded on the real line, independently of n, it is clear that
estimates of the form (25) and (28) hold.

Next, we split the integrals in (3) and (4) as

f-
n+= f-n+x f- n+x+iY

... = ... + ....
-n -n -n+x

(31)

The first integral on the right-hand side remains bounded for all nand x.
As regards the second integral, it can be estimated by constant multiples of

1+ 1 (errlYI - 1)
In - n,1 3 and Izl (errlYI _ 1)

In(n-nJI

for An(z) and Bn(z), respectively, provided n is different from 0 and n"
Now (26) and (29) are readily obtained.

Finally, for n ~ N(x) it is quickly seen that in the case of Bn(z) the first
integral on the right-hand side of (31) is bounded by a constant multiple of
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Izl/ln(n - nJI. Together with our estimate for the second integral we obtain
(30).

For n tic N(x) the point zero can never lie in the range of integration in
(31). Therefore we may write

A ( ) _ ( - 1t + I sin nz f n + z sin n( dr sin nz 12
•

n Z - 2 -r-3- s --2-3 SIll n( d(
n-n s n n 0

sin nz12

( 1 1)=-~ 0 n3 -(n-03 sinn(d(.

Splitting the integral as

12 IX fX+ iv... = ... + ...
o 0 x

(32 )

we use the second law of the mean for the first integral on the right-hand
side to obtain

IrC3 - (n ~ ( 3)sin n( d( I

= 1~3 - (n~x)31'lr sin n( d(1

21 t 1 I~~ n3- (n-x)3 where 1] E (0, x).

This leads to the first term on the right-hand side of (27). The second one
is obtained in an obvious way by estimating the integral from x to x + iy.

LEMMA 5. Let (an)nEJ' and (bn)nEJ' be two sequences of complex num­
bers. Suppose that for some A> 1

and

as n -> 00. Then

n

L: lavl=O(nP(logn) )),
v = -n

n

L: Ibvl = O(nq(log n)-.:t),
v = -11

0<p~4

0<q~2

(33)

(34)

:x:'

H(z):= L: (anAn(z) + bnBn(z)) (35)
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converges absolutely and uniformly on every compact subset of C and
represents an entire function of exponential type 2n. Furthermore,

IH(x)[ = O(lxl<1(log Ixl )-A) as x~±oo (36)

where <T=max{p, q}.

Proof Let C be any compact subset of C so that there exists an integer
k with

Cc {ZEC: [zi ~k}.

In view of Lemma 4 we have for all Z E C

if Inl < 2k, and

if Inl ~ 2k. To prove the absolute and uniform convergence of the series
(35) on C it is now sufficient to show that

I la~[
Inl;" 2k n

and I Ib;1
Inl ;,,2k n

converge; but this can be readily done via Abel's summation. Hence H
represents an entire function which must be of exponential type 2n as is
seen from Lemma 4.

Let us now verify (36). Without loss of generality we may assume that
x>o. Then

nx

I lanAn(x) + bnBn(x)1 = O(n~(log nJ-A)
n~O

as x ~ 00. Using Lemma 4 it remains to estimate

and
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For this we split the two summations as

I 20\ I 2n\ f~

I + I + I + I
2fT\"+ I n=J1\ + j 11= -f."' /I 2fT,

In the case of Sj the first two sums are obviously of order O(nWog n,) ').
For all the indices n in the remaining two

and so Abel's summation shows that these sums are of order o(x P 3). In
the case of S2 it is sufficient to estimate only the contribution coming from
positive indices. For this we write

and

CD X '£ x q I

,,~'" n(n -nJ 'lb"l:::; "~ll' ----;;q'lb"+ll,1 = o(x
q

-1),

where in the second case Abel's summation is used in the last step, This
completes the proof of (36).

LEMMA 6. Let (a"),, Ed' and (b")"Ed' be two sequences of complex num­
bers. Suppose that

and for some A> 1

a,,=o(n)

Ib,,1 = O(lnl(log Inl) ;)

(37)

(38 )

as n ~ ±oo. Then the series H(z) defined in (35) represents an entire
function of exponential type 2n, Furthermore, for () E (0, n)

(39)

as r ~ 00.

Proof Since (37) and (38) imply (33) and (34), respectively (with q = 2
and an arbitrary p> 2), we know from Lemma 5 that H represents an
entire function of exponential type 2n, It remains to verify (39).
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Applying [4, Theorem 1.4.2J to the function

101

f(z) ehiz

z~ ,
z+iK

fE {H, H'}

with an appropriate K> 0 we see that it is enough to prove (39) for
() #- n/2. Then, for x + iy = re±i8 we always have x ---+ ±oo with r ---+ 00.

Let us first turn to H(re±ilJ). Referring to Lemma 4 we need only con­
sider those terms in the bounds for the fundamental functions which carry
a factor e2rrlyl since they dominate all other terms as r ---+ 00. Then in view of
(25 )-( 30) it suffices to show that for nx> 0

and
00 1

n ~~.Cfj -In-(n---n,""""')1. Ibnl = o( 1)
n ~ {O.nd

as x ---+ 00. In the case of (40) we split the summation as

2nx 1 00 -1

I ... + I ... + I····

(40)

(41 )

n=l
n #nx

n = 2n~ n= -00

Now using (37) we readily see that the first sum is of order o(n x )' whereas
the last two series are even bounded. Hence (40) holds.

In the case of (41) the biggest possible contribution can come from
positive indices only, if n, > O. Let us therefore consider

and use the estimate

for n ~ 2 to obtain

00 1 )+ I -- (log n)-). .
n-nn = 2nx + 1 x
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It can be shown (see [10, Lemma 3]) that

Hence the first sum is of order O( (log n x) 1 ,l) and so in particular o( 1).
For the second sum we have

co 1 x 1I -- (log n) ;.:( I - (log n) A = 0(1 )
n ~ 2n, + 1 n - n< n ~ n, + 1 n

as x - 00. Thus (41) is also verified.
To estimate H'(re±iO) we first differentiate the fundamental functions.

Considering then only those contributions which grow at least as fast as
e2"IYlwe see again that the desired result follows from (40) and (41).

LEMMA 7. Let X be a function defined on IR and suppose that it is con­
tinuous and bounded. For 15 > 0 let

( (
sin bZ/4)4

gil z):=
z

and define

h(z):=w1fX g6(t-z)X(t)dt
:x;

where

w :=r.g6(t) dt.
ex

Then h is an entire function of exponential type b. Furthermore,

(42)

(43)

if

Ih(x)1 = O(x 2)

Ix(x)1 = O(x 2
)

as x -+ ±oo,

as x -+ ±oo.

(44 )

(45 )

Proof We only verify the growth property (44) since everything else is
well known [13, pp.257-259].

For z = x E IR we may write

h(x)=w- 1r g6(t)X(t+x)dt.
-co
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we obtain
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x2h(x)=(()~1 f~CD g6(t)[(t+X)2 X(t+x)] dt+w 1LCC

CD

t 2gAt)x(t+x)dt

-2w- 1 fJ tga(t)[(t+x)X(t+x)J dt.
~ CD

Now we see that under condition (4S) all three terms on the right-hand
side are bounded on the real line.

LEMMA 8. Let (an)nd<J and (b n)nEN be two sequences of complex num­
bers. If for some A> 1

n

L la v\=O(n2(1ogn)-;o)
v = 1

and

as n -+ CfJ, then
n

L lavbv\ = O( 1).
v=1

Proof In view of the estimate Ibnl ~ c l3n -2 it is enough to consider

Now the desired result follows via Abel's summation and the fact that

cD 1

n~2n(Jogn)A

converges for A> 1.

3. PROOFS OF THE RESULTS

Proof of Theorem 1. It follows from Lemma S t'lat R(f; .) represents
an entire function of exponential type 2n such that

as x -- ±co.

640/50/2·2
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Now, setting F:=fand G:= R(f; .) we conclude from Lemma 3 that i/J is
a polynomial of degree at most I. In view of (21 ) this implies that

IF(x)-G(x)1 =O(lxl)

Hence
Il(x)1 = 0(x2(log Ixl) ;)

and by Lemma 2 also

1.f'(x)1 =0(x2(log Ixl);)

as x -4 ±x.

as x -4 ±oc

as x -4 ±oo. (46 )

Next we choose £5 E (0, (2n - r )/2) and define

1
Xm(x) := 1+ (x/rn)2'

Now, if

hm(z):=W If' gAt-z)Xm(t)dt,
-'x

then, according to Lemma 7,

In: Zf---* I(z) hm(z)

as well is of exponential type less than 2n. Lemmas 7 and 8 show that

"L: I/m(v)1 =0(1) as n -400. (47)

In order to calculate the second derivatives of f;" at the integers we may
write for real x

h~)(X)=W-1 IX. gAt)x~:)(t+x)dt
x

and deduce that for rn -4 00

(j = 0, 1,2) (48)

Ihm(x)1 = 0(1),

Ih;"(x)1 = 0 (~}

Ixh;"(x)1 =0(1),

Ih;;'(x)1 = 0 (~2)
(49)

uniformly in x. Furthermore, transforming (48) into

(j = 0, 1,2)
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we conclude with the help of Lemma 7 that for every fixed m
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(j = 0, 1,2) (50)

as x --> ± 00. Since

f';,,(x) = j"(x) hm(x) + 2f'(x) h;"(x) + f(x) h';,,(x)

we may use (46), (50), and Lemma 8 to see that for every fixed m

as n --> 00. Now Lemma 5 yields

as x --> ± 00 .

Hence for F:= fm and G:= RUm; .) in Lemma 3 the corresponding
function lj; is a constant. This gives (by Property (iii) of RUm; .))

Obviously,

lim fm(z)=f(z)
m-+x

uniformly on every compact subset of iC and

lim cj."U,J = cj,,,U)
m-+''l:'

Hence it remains to show that

for J= 1,2.

lim RUm; z) = R(f, z).

Let C be any compact subset of iC and let G be a given positive number.
By virtue of Lemma 5 and (49) we can find an no>°such that

and
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for all Z E C and all positive integers m. Furthermore, there exists a con­
stant K> 0 such that for all z E C

x

L If(v) A)z)1 < K and
x

L (1f"(v)1 + 1) IBv(z)1 < K.

Since lim m ~x hm(x) == 1 we can achieve that for sufficiently large m, say,
m~mo, and V= -no+ I, -no+2,..., no-2, no-l

I:
12f'(v) h;"(v)1 < 6K'

and

If(v) h;;'(v)1 < 6~·

Hence for all z E C and all m ~ mo

no t

IR(f; z) - R(fm; z)1 ~ L (If(v)(l- hm(v)) A)z)1
v = --llO+ t

+ If"(v)(l - hm(v)) Bv(z)1 + 12f'(v) h;"(v) Bv(z)1

+If(v)h;;'(v)Bv(z)I)+SI+S2<1:·

Thus the desired representation is proved.
Let us now justify Remark 1. Note that for n oF°

(
1) -1 f1/2 ( 1 1)

- Bn 2" = 2; 0 ;; + t _ n sin nt dt > c 14 n 2

Hence

vt-n 1f"(V) Bv G)! > C l4 vt-n 1f"(v)l· v-
2

;

v#o v#o

(52)

but Abel's summation shows that the right-hand side tends to infinity with
n, if (11) holds.

Proof of Theorem 2. With the help of [4, Theorem 1.4.4] it is readily
verified (see the proofs of Lemmas 1 and 2) that for all eE (0, n) and
j=O,l

as r -+ 00.
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By Lemma 6, R(f; z) exists and satisfies together with its first derivative the
same growth condition. Setting F:= 0 and G:= R(f; .) - f the
corresponding function'" in (21) becomes

n cos nzG(z)/sin nz - G'(z)
t/J(z) = . 2 .

Sill nz

From this it is seen that for an arbitrary I' E (0, n/2)

as r -+ 00 (53)

for e= -1',1', n - 1', n + 1'. By the Phragmen-Lindel6f principle (53) holds
uniformly for all f) E [0, 2n]. According to a refined version of Liouville's
theorem '" must be a constant. Now the desired representation follows
from (21) by carrying out the integration and taking into account that
R'(f; 0) = R"'(f; 0) = O.

To justify the unexplained part of Remark 2 it is enough to show that

if

If "( )1 >- Inl
n ~c15'loglnl'

a fact easily seen with the help of (52).

Proof of the Corollary. Obviously (14) implies (12); Lemma 2 shows
that it also implies (13).

Proof of Theorem 3. In [10, Lemma 8J we constructed a sequence of
entire functions TT(f; . ) of exponential type 2r such that

f(x) - TT(f; x) = o(l/r),

T;(f; x) = o(r),

T~(f; x) = o(log r),

T;'(f;x)=0(r 2
)

uniformly in x as r -+ 00. Now denote by RT(f; .) the operator in (5) trans­
formed from integer nodes to nn/r (n E £:), i.e.,

The crucial observation is that according to Theorem 2
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holds, if f is simply assumed to be bounded (so that (18) is no longer
needed). V sing the decomposition

f(x) - RrCf; IJ, x) =f(x) - TrCf; x) + T,(f; x) - R,(f; {J, x)

=f(x)- T,(f;x)

+" ~if (T, (;; ,~n)- f ( :n))A" Gx)
+ (~r ,,~fx (T; (f; nrn) - Ptn) B" (; x)
+c1,r(T,(f; ·))sinrx+c2.T (TrCf; '))sin2rx (54)

the proof of the convergence is completed as in [10, p. 199].
It remains to show that (2) cannot be replaced by (17). This may be

done as follows. For n#-O we can write

sin nx f ,,+ x I ( sin n()
(-I)" A,Jx)=-- ~2 I --r- d( + Kn(x),

n ." (, ns

where

x sin nx I- 1 sin nx
Kn(x)=---+(-I)" --(I-cosnx).

nn x- n (nn)3

It is easily seen that

'x'

I IK,,(x)! = o(x)
n ---:x

Furthermore,

as x -+ ±oo.

f-
Il + X I ( sin n()

sgn Y2 1--- d( = sgn x.
,,(, n(

This leads us to

as x -+ ±oo.

By Theorem I

x. n
L (-1)" A,,(x) ==2 x sin nx + cos nx.
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Thus we obtain
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and

00

n = -00

IAn(x)1
~c16Ixl,

if

if

-1~x~l,

Ixl > 1

n~~ ec IAn (j + ~) I~ C 17 12j + 11

Hence, setting

(j=o, ± 1, ±2,... ).

)'T:= max L IAn(rx)1
--1 :os; x:<::; 1 n= --Cf.

we see that for T > n

(55)

Next denote by ~T a point of the unit interval where the maximum in (55)
is attained and consider

Now we can use the method of Erdos and Tunin [5, pp.52-54] (see also
Kis [11, pp. 273-276]) to construct for every given a E (0, 1) a bounded
function f: IR -+ IR belonging to Lip a such that
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